Automated reasoning and Constraint Progamming A brief introduction

Dimitri Justeau-Allaire

dimitri.justeau@ird.fr

Knowledge representation

Automated reasoning

e.g. SAT, MILP, CP, expert systems, inference

Automated reasoning

• Based on data

- Automated reasoning
- Based on models

e.g. Equations, rules, constraints, formulas $(b_1 \land b_2 \land \neg b_3) \lor (\neg b_1 \land b_4 \land b_2)$

- Based on data
- Generic methods to perfom complex tasks

Automated reasoning

Generic methods to solve

• Based on models

complex problems

•

e.g. Equations, rules, constraints, formulas $(b_1 \wedge b_2 \wedge \neg b_3) \vee (\neg b_1 \wedge b_4 \wedge b_2)$

e.g. Prove the Pythagorean theorem

- Based on data
- Generic methods to perfom complex tasks
- Concerned about accuracy

- Automated reasoning
- Based on models
- Generic methods to solve
 complex problems
- Concerned about guarantees ---- optimal and safe trajectories

e.g. Prove the Pythagorean theorem

e.g. Equations, rules, constraints, formulas

- Based on data
- Generic methods to perfom complex tasks
- Concerned about accuracy
- Data sensitive

- Automated reasoning
- Based on models
- Generic methods to solve
 complex problems
- Concerned about guarantees ----
- Model sensitive

e.g. Equations, rules, constraints, formulas $(b_1 \wedge b_2 \wedge \neg b_3) \vee (\neg b_1 \wedge b_4 \wedge b_2)$

e.g. Prove the Pythagorean theorem

e.g. Guarantee that the flight control software computed
optimal and safe trajectories

All roads lead to Rome, but some are faster than others...

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

• CP is paradigm for **modelling** and **solving** constraint statisfaction problem (**CSP**) and constrained optimization problems (**COP**).

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

• CP is paradigm for **modelling** and **solving** constraint statisfaction problem (**CSP**) and constrained optimization problems (**COP**).

CSP: a triplet (X, D, C) where: $X = \{x_1, \ldots, x_n\} \rightarrow \text{variables}$ $D = \{D_1, \ldots, D_n\} \rightarrow \text{domains}$ $C = \{C_1, \ldots, C_m\} \rightarrow \text{constraints}$

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

 CP is paradigm for modelling and solving constraint statisfaction problem (CSP) and constrained optimization problems (COP). CSP: a triplet (X, D, C) where: $X = \{x_1, \ldots, x_n\} \rightarrow \text{variables}$ $D = \{D_1, \ldots, D_n\} \rightarrow \text{domains}$ $C = \{C_1, \ldots, C_m\} \rightarrow \text{constraints}$

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

• CP is paradigm for **modelling** and **solving** constraint statisfaction problem (**CSP**) and constrained optimization problems (**COP**).

CSP: a triplet (X, D, C) where: $X = \{x_1, \ldots, x_n\} \rightarrow \text{variables}$ $D = \{D_1, \ldots, D_n\} \rightarrow \text{domains}$ $C = \{C_1, \ldots, C_m\} \rightarrow \text{constraints}$

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

- CP is paradigm for modelling and solving constraint statisfaction problem (CSP) and constrained optimization problems (COP).
- Variables can be of several types: Integers, Reals, Sets, Graphs, etc.
- Constraints can be extensional, arithmetic, and logical (semantic)

e.g. AllDifferent, AtMost, Regular

CSP: a triplet (X, D, C) where: $X = \{x_1, \ldots, x_n\} \rightarrow \text{variables}$ $D = \{D_1, \ldots, D_n\} \rightarrow \text{domains}$ $C = \{C_1, \ldots, C_m\} \rightarrow \text{constraints}$

« Constraint Programming represents one of the closest approaches computer has yet made to the Holy Grail of programming: **the user states the problem, the computer solves it**. »

- CP is paradigm for **modelling** and **solving** constraint statisfaction problem (**CSP**) and constrained optimization problems (**COP**).
- Variables can be of several types: Integers, Reals, Sets, Graphs, etc.
- Constraints can be extensional, arithmetic, and logical (semantic)
 possible values are enumerated e.g. AllDifferent, AtMost, Regular
- Solving is generic, and based on Filtering, Propagation, and Backtracking

CSP: a triplet (X, D, C) where: $X = \{x_1, \ldots, x_n\} \rightarrow \text{variables}$ $D = \{D_1, \ldots, D_n\} \rightarrow \text{domains}$ $C = \{C_1, \ldots, C_m\} \rightarrow \text{constraints}$

- A generic approach for **modeling** and **solving constraint satisfaction** and **constrained optimization** problems
- Exact, expressive and extensible
- Support non-linear constraints
- A CP solver can interact with other systems
 - > e.g. Machine learning, SAT
- In practice:
 - > Modeling is ofter critical for performances
 - > When problems are hard, fine tuning is often necessary
- Many solvers, many languages

Google OR-Tools

• For each region, one integer variable

$$v_2 \in \{1, 2\}$$

$$\nu_1 \in \{1, 2, 3\}$$

$$v_3 \in \{1, 2\}$$

- For each region, one integer variable
- Inequality constraints

- For each region, one integer variable
- Inequality constraints
- An instantiation of the variables gives us a solution to the problem

Step	v_1	v_2	v_3	Deductions
#o Initialize	{1 <i>,</i> 2 <i>,</i> 3}	{1,2}	{1,2}	Ø
#1 <i>Try</i> $v_1 = 1$	{1}	_	_	$\nu_2 \neq 1 \land \nu_3 \neq 1$
#2 Remove 1 from $\mathcal{D}(\nu_2)$ and $\mathcal{D}(\nu_3)$	_	{2}	{2}	$\nu_3 \neq 2 \land \nu_2 \neq 2$
#3 Remove 2 from $\mathcal{D}(\nu_2)$ and $\mathcal{D}(\nu_3)$	_	Ø	Ø	$\nu_1 \neq 1$

Constraint propagation

A better model for our simple coloring problem?

$$v_2 \in \{1, 2\}$$

 $v_1 \in \{1, 2, 3\}$ $v_3 \in \{1, 2\}$

• AllDifferent, a global (logical) constraint

- Instead of applying pairwise binary inequality constraints,
- Variables and their possible values are seen as a **bipartite graph**

- Instead of applying pairwise binary inequality constraints,
- Variables and their possible values are seen as a **bipartite graph**
- A solution corresponds to a maximum cardinality matching (MCM)

- Instead of applying pairwise binary inequality constraints,
- Variables and their possible values are seen as a **bipartite graph**
- A solution corresponds to a maximum cardinality matching (MCM)
- Filtering: remove edges that cannot belong to a MCM
 - > Algorithm based on the Hall's marriage theorem (linear time)

- Instead of applying pairwise binary inequality constraints,
- Variables and their possible values are seen as a **bipartite graph**
- A solution corresponds to a maximum cardinality matching (MCM)
- Filtering: remove edges that cannot belong to a MCM
 - > Algorithm based on the Hall's marriage theorem (linear time)

Step	v_1	v_2	v_3	Deductions
#o Initialize	{1,2,3}	{1,2}	{ 1 , 2 }	Ø
#1 Try $v_1 = 1$	{1}	_	_	$\nu_2 \neq 1 \land \nu_3 \neq 1$
#2 Remove 1 from $\mathcal{D}(\nu_2)$ and $\mathcal{D}(\nu_3)$	_	{2}	{2}	$\nu_3 \neq 2 \land \nu_2 \neq 2$
#3 Remove 2 from $\mathcal{D}(v_2)$ and $\mathcal{D}(v_3)$	_	Ø	Ø	$\nu_1 \neq 1$
#4 Backtrack to #0 and try $v_1 = 2$	{2}	{1,2}	{ 1 , 2 }	$\nu_2 \neq 2 \wedge \nu_3 \neq 2$
#5 Remove 2 from $\mathbb{D}(\nu_2)$ and $\mathbb{D}(\nu_3)$	_	{1}	{1}	$\nu_3 \neq 1 \land \nu_2 \neq 1$
#6 Remove 1 from $\mathbb{D}(\nu_2)$ and $\mathbb{D}(\nu_3)$	_	Ø	Ø	$\nu_1 \neq 2$
#7 Backtrack to #0 and try $v_1 = 3$	{3}	{1,2}	{1,2}	Ø
#8 Try $v_2 = 1$	_	{1}	_	$\nu_3 \neq 1$
#9 Remove 1 from $\mathcal{D}(v_3)$	{3}	{1}	{2}	(3,1,2) is a solution

Step	v_1	v_2	v_3	Deductions
#o Initialize	{1,2,3}	{1,2}	{1,2}	$\nu_1 \neq 1 \land \nu_1 \neq 2$
#1 Remove 1 and 2 from $\mathcal{D}(v_1)$	{3}	_	_	Ø
#2 <i>Try</i> $v_2 = 1$	_	{1}	_	$v_3 \neq 1$
#3 Remove 1 from $D(v_3)$	{3}	{1}	{2}	(3,1,2) is a solution

	1	2		3	4	5	6	7
	3	4	5		6	1	8	2
		1		5	8	2		6
		8	6					1
	2				7		5	
		З	7		5		2	8
	8			6		7		
2		7		8	3	6	1	5

	1	2		3	4	5	6	7
	3	4	5		6	1	8	2
		1		5	8	2		6
		8	6					1
	2				7		5	
		3	7		5		2	8
	8			6		7		
2		7		8	3	6	1	5

- For each cell i, an integer variable:
 - $x_i \in [1, 9]$ if empty
 - $x_i = c$ if not empty

Thank you !