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What is automated reasoning, what is it for ?
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complex tasks complex problems -~ . —
P plexp e.g. Guarantee that the flight '
control software computed !
* Concerned about accuracy » Concerned about guarantees - - - -» optimal and safe trajectories
« Data sensitive « Model sensitive - — - - ______ , Allroads lead to Rome, but some
are faster than others...
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. According to E. Freuder: CSP: a trlplet (X, .D, C) where:

« Constraint Programming represents one of the closest approaches computer has yet made X ={x1, ..., Xp} — variables
to the Holy Grail of programming: the user states the problem, the computer solves it. » D={D4, ..., D,} — domains
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« CPis paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP). COP: a CSP with:

X, € X — objective variable

» Variables can be of several types: Integers, Reals, Sets, Graphs, etc. : . . .
A policy — minimize or maximize
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possible values are enumerated e.g. AllDifferent, AtMost, Regular

* Solving is generic, and based on Filtering, Propagation, and Backtracking

allDifferent(x, y, z, So, ..., Sn)




In summary, CP is:

« A generic approach for modeling and solving constraint satisfaction and
constrained optimization problems

€
CHOCQ

» Exact, expressive and extensible

0 Google OR-Tools

* Support non-linear constraints

A CP solver can interact with other systems 002
’ w2 OSCAR

@ OPERATIONAL RESEARCH IN SCALA

> e.g. Machine learning, SAT

* In practice: __;@”\’%‘%r«
N\

> Modeling is ofter critical for performances ///’ ACE

> When problems are hard, fine tuning is often necessary

» Many solvers, many languages
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Modelling in CP: a basic example

» For each region, one integer variable

Fill each region with a different color
1 can be blue, green or red * Inequality constraints
2 and 3 can be blue or green

* An instantiation of the variables gives us a solution
to the problem

vy =1
V1 # V2 V) # V3

Vi £ V3
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Do you remember ? All roads lead to Rome, but some are faster than others...
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A better model for our simple coloring problem ?



Global constraints CP - On the importance of modeling

Fill each region with a different color
1 can be blue, green or red

2 and 3 can be blue or green
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Global constraints CP - On the importance of modeling

Fill each region with a different color
1 can be blue, green or red

2 and 3 can be blue or green « AllIDifferent, a global (logical) constraint
\
i AllDifferent(v4, v, , v3)
V1 vy €{1,2
_\)2 2 { ) }
vy €1{1,2,3} vz €1{1,2}
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* |nstead of applying pairwise binary inequality constraints,

« Variables and their possible values are seen as a bipartite graph

« A solution corresponds to a maximum cardinality matching (MCM)

 Filtering: remove edges that cannot belong to a MCM V3 3

> Algorithm based on the Hall's marriage theorem (linear time)

Step % ) V3 Deductions

#o Initialize {1.2,3} {1,2} {1,2} 0

#1 Try vy =1 {1} - - va#1Avz #1

#2 Remove 1 from D(vy2) and D(vs) - {2} {2} vy #2NAvy #2

#3 Remove 2 from D(vy) and D(v3) - 0 0 vy # 1

#4 Backtrack to #o and try vi =2 {2} {1,2} {1,2} Vo #2NAv3y #2

#5 Remove 2 from D(vy) and D(v3) = 1} (1} v3£TAvy #1 Step vy V2 V3 Deductions
#6 Remove 1 from D(v2) and D(v3) = 0 0 vy #2 #o Initialize {,2,3y 1,2} {1,2} vi#F 1AV #2
#7 Backtrack to #o and try v, =3 3} 1,22 1,2 0 |:> #1 Remove 1 and 2 from D(v1) (3} - - 0

#8 Tryvy =1 - {1} - vy # 1 #2Tryvy =1 - {1} - vy #1

#9 Remove 1 from D(v3) {3} {1} {2} (3,1,2) is a solution #3 Remove 1 from D(v3) {3} {1} {2} (3,1,2) is a solution
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How to solve a Sudoku with CP ?

» For each cell i, an integer variable:
* X; € [1,9]ifempty
* X; = cifnotempty

»  Foreach set of variables R; in a row:
« AllIDifferent(R;)

- Foreach set of variables C; in a column:
« AllIDifferent(C;)

»  For each set of variables S; in a square:
« AllIDifferent(S;)







