Automated reasoning and Constraint Progamming
A brief introduction

Dimitri Justeau-Allaire

dimitri.justeau@ird.fr

Institut de Recherche

\\-_ ./" <
e pour e Développement KR
— - o \

Three main «domains» of artificial intelligence

Automated learning Knowledge representation Automated reasoning

Three main «domains» of artificial intelligence

Automated learning Knowledge representation Automated reasoning

v

v

e.g. SAT, MILP, CP, expert systems, inference

What is automated reasoning, what is it for ?

Automated learning Automated reasoning

What is automated reasoning, what is it for ?

Automated learning Automated reasoning e.g. Equations, rules, constraints, formulas
_-v (by A by A =b3) V (=by A by A by)

f”
-

-
-

 Based on data « Based on models -

What is automated reasoning, what is it for ?

Automated learning Automated reasoning e.g. Equations, rules, constraints, formulas
P ¢ (by A by A =b3) V (=by A by A by)

-
f’

-
-

 Based on data « Based on models -

e.g. Prove the Pythagorean theorem
P

* Generic methods to perfom * Generic methods to solve//"
complex tasks complex problems -

-
-

What is automated reasoning, what is it for ?

Automated learning

 Based on data

* Generic methods to perfom
complex tasks

* Concerned about accuracy

Automated reasoning e.g. Equations, rules, constraints, formulas
__-v (by Aby A=b3) V (=by A by A b3)

-
f’

-
-

Based on models -
e.g. Prove the Pythagorean theorem

> .
Generic methods to solve .-~
complex problems -~ . —
piexp e.g. Guarantee that the flight ’
control software computed e Sl
Concerned about guarantees - - - -» optimal and safe trajectories

What is automated reasoning, what is it for ?

Automated learning Automated reasoning e.g. Equations, rules, constraints, formulas
_-v (by Aby A =b3)V (=by Aby A b))

-

 Based on data « Based on models -~
e.g. Prove the Pythagorean theorem
_ .
* Generic methods to perfom » Generic methods to solve .-~
complex tasks complex problems -~ . —
P plexp e.g. Guarantee that the flight '
control software computed !
* Concerned about accuracy » Concerned about guarantees - - - -» optimal and safe trajectories
« Data sensitive « Model sensitive - — - - ______ , Allroads lead to Rome, but some
are faster than others...
e ¢
:7: 5 S '.~ %
—>» . ;’é 3 o
- :.'.% VS msxsﬁ;:zzaef': }
e\ Uy O O O @ I E— 7 .3 i
o Fom g.:.' =9 29
(o9 4 2 = :..' ..‘2 9

Introduction to Constraint programming (CP)

» According to E. Freuder:

« Constraint Programming represents one of the closest approaches computer has yet made
to the Holy Grail of programming: the user states the problem, the computer solves it. »

Introduction to Constraint programming (CP)

» According to E. Freuder:

« Constraint Programming represents one of the closest approaches computer has yet made
to the Holy Grail of programming: the user states the problem, the computer solves it. »

« CPis paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP).

Introduction to Constraint programming (CP)

» According to E. Freuder:

P
e

« Constraint Programming represents one of the closest approaches computer has yet made
to the Holy Grail of programming: the user states the problem, the computer solves it. »

« CPis paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP).

CSP: a triplet (X, D, C) where:

X ={x1, ..., Xp} — variables
D ={D4, ..., D,} > domains
C={Cq, ..., C,p} — constraints

Introduction to Constraint programming (CP)

» According to E. Freuder:

r
e

« Constraint Programming represents one of the closest approaches computer has yet made
to the Holy Grail of programming: the user states the problem, the computer solves it. »

« CPis paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP).

CSP: a triplet (X, D, C) where:

X ={x1, ..., Xp} — variables
D ={D4, ..., D,} > domains
C={Cq, ..., C,p} — constraints

COP: a CSP with:

X, € X — objective variable
A policy — minimize or maximize

Introduction to Constraint programming (CP)

According to E. Freuder:

« Constraint Programming represents one of the closest approaches computer has yet made
to the Holy Grail of programming: the user states the problem, the computer solves it. »

CP is paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP).

CSP: a triplet (X, D, C) where:

X ={x1, ..., Xp} — variables
D ={D4, ..., D,} > domains
C={Cq, ..., C,p} — constraints

COP: a CSP with:

X, € X — objective variable
A policy — minimize or maximize

Introduction to Constraint programming (CP)

CSP: a triplet (X, D, C) where:

» According to E. Freuder:

St

« Constraint Programming represents one of the closest approaches computer has yet made X ={x1, ..., xp} — variables
to the Holy Grail of programming: the user states the problem, the computer solves it. » D={Dq, ..., Dy} — domains

C={Cq, ..., C,p} — constraints

« CPis paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP). COP: a CSP with:

X, € X — objective variable

» Variables can be of several types: Integers, Reals, Sets, Graphs, etc.
A policy — minimize or maximize

« Constraints can be extensional, arithmetic, and logical (semantic)

/ \
/ \
1 4 4

possible values are enumerated e.g. AllDifferent, AtMost, Regular

Introduction to Constraint programming (CP)

. According to E. Freuder: CSP: a trlplet (X, .D, C) where:

« Constraint Programming represents one of the closest approaches computer has yet made X ={x1, ..., Xp} — variables
to the Holy Grail of programming: the user states the problem, the computer solves it. » D={D4, ..., D,} — domains

C={Cq, ..., C,p} — constraints

« CPis paradigm for modelling and solving constraint statisfaction
problem (CSP) and constrained optimization problems (COP). COP: a CSP with:

X, € X — objective variable

» Variables can be of several types: Integers, Reals, Sets, Graphs, etc. : . . .
A policy — minimize or maximize

« Constraints can be extensional, arithmetic, and logical (semantic)

/ \
/ \
1 4 4

possible values are enumerated e.g. AllDifferent, AtMost, Regular

* Solving is generic, and based on Filtering, Propagation, and Backtracking

allDifferent(x, y, z, So, ..., Sn)

In summary, CP is:

« A generic approach for modeling and solving constraint satisfaction and
constrained optimization problems

€
CHOCQ

» Exact, expressive and extensible

0 Google OR-Tools

* Support non-linear constraints

A CP solver can interact with other systems 002
’ w2 OSCAR

@ OPERATIONAL RESEARCH IN SCALA

> e.g. Machine learning, SAT

* In practice: __;@”\’%‘%r«
N\

> Modeling is ofter critical for performances ///’ ACE

> When problems are hard, fine tuning is often necessary

» Many solvers, many languages

Modelling in CP: a basic example

Fill each region with a different color
1 can be blue, green or red

2 and 3 can be blue or green

Modelling in CP: a basic example

Fill each region with a different color * For each region, one integer variable
1 can be blue, green or red
2 and 3 can be blue or green

V1 v, €{1,2}

V1 6{1,2,3} V3€{1,2}

Modelling in CP: a basic example

Fill each region with a different color * For each region, one integer variable
1 can be blue, green or red

* Inequality constraints
2 and 3 can be blue or green

v1 VZE{])Z}
VZ 2 #y W‘vs
vy €11, 2,3} vz €1{1,2}

Vi #V3

Modelling in CP: a basic example

» For each region, one integer variable

Fill each region with a different color
1 can be blue, green or red * Inequality constraints
2 and 3 can be blue or green

* An instantiation of the variables gives us a solution
to the problem

vy =1
V1 # V2 V) # V3

Vi £ V3

What about the solving process ?

e N)
D(vi) =1{1,2,3} Backtrackable search tree
D(v2) ={1,2}
vy €{1,2} D(vs) ={1,2}
V1 # Vs V2 #V3
v €{1,2,3} vz €{1,2}
V1 # V3
CP Model
. J
s N
Step vy V2 V3 Deductions
#o Initialize 1,2,3} {1,2} 11,2} 1]

9 Constraint propagation

What about the solving process ?

e N)
D(vi) =1{1,2,3} Backtrackable search tree
D(v2) ={1,2}
vy €{1,2} Divs) ={1,2}
Vi # V2 V2 # V3
v = 1
v €{1,2,3} vz €{1,2}
V1 # V3
CP Model
_ J
~)
Step Vi V2 v3 Deductions
#o Initialize L P 0
#1 Tryvy =1 {1} - - v2 ZTAv; #1
L Constraint propagation)L)

What about the solving process ?

e N A
Dlvi) =1{1,2,3} Backtrackable search tree
D(v2) ={1,2}
vy €{1,2} Divs) ={1,2}
V1 # Vs V2 #V3
Vv = 1
Vi 6{1,2,3} V3 6{1,2}
V1 # V3
CP Model
\ J
~)
Step vy V2 v3 Deductions
#o Initialize (1,2,3y (1,22 (1,2 0
#1Tryvy =1 {1} - - vy #1Avy #£1
#2 Remove 1 from D(v;) and D(v3) - {2} {2} vy #2NAvy #£2
Constraint propagation
\ propag 2N Y,

What about the solving process ?

s N)
D) ={1,2,3} Backtrackable search tree
D(v2) ={1,2}
va €{1,2} D(v3) ={1,2}
V1 # Vs V2 #V3
vy = 1
Vi 6{1,2,3} V3 6{1,2}
V1 # V3 D(vy) ={1}
D[Vz] = @
CP Model D(v3) =1
o J
/~ 2\
Step vy V2 v3 Deductions
#o Initialize {1,2,3y {1,2} {1,2} 0
#1Tryvy =1 {1} - - vy #1Avy #£1
#2 Remove 1 from D(v;) and D(v3) - {2} {2} vy #2NAvy #£2
#3 Remove 2 from D(v;) and D(v3) - 0 0 vy #£ 1
Constraint propagation
\ propag /L J

What about the solving process ?

e N h
Divy) =1{1,2,3} Backtrackable search tree
D(vz) ={1,2}
va €{1,2} D(v3) =1{1,2)
Vi V2 V2 V3
vi=1 vi #1
Vi 6{])2)3} V3 6{132}
V1 # V3 D(vy) = {1} D(vi) =1{2,3}
D(vy) =10 D(v2) ={1,2}
L CP Model) D(v3) =10 D(v3) ={1,2}
- ™ vy =2
Step vy V3 v3 Deductions
#o Initialize {1,2,3 {1,2} {1,2} 0
#1Tryvy =1 {1} - - vy #1Avy #£1
#2 Remove 1 from D(v;) and D(v3) - {2} {2} vy #2NAvy #£2
#3 Remove 2 from D(v;) and D(v3) - 0 0 vy #£ 1
#4 Backtrack to #o and try vy =2 {2} {1,2y {1,2} vy #2NAvy #£2
Constraint propagation
_ bropag 2N J

What about the solving process ?

- N[)

D(vi) =1{1,2,3} Backtrackable search tree
D(va) ={1,2}
v2 €11,2} DE»@%:»{(LZ}
Vi V2 V) # V3
v =1 v £1
Vi 6{],2,3} V3 6{1,2}
V1 # V3 D(v1) ={1} D(v1) ={2,3}
D(v2) =10 D(vz2) ={1,2}
CP Model D(vs) =0 Divs) ={1,2}
o J
(-) vy =2 Vi #2
Step vy V2 v3 Deductions
#o Initialize {1,2,3} {1,2} {1,2} 0
#1 Tryvy =1 {1} - - v #1Avz #1 D(vq) =1{2} D(vy) =13}
#2 Remove 1 from D(v) and D(v3) - 2} {2} vz £ 2Avy #2 D(vz) = D(vz2) =1{1,2}
#3 Remove 2 from D(v3) and D(v3) - 0 0 vy # 1 D(v3) =0 D(v3) ={1,2}
#4 Backtrack to #o and try vi =2 {2} {1,2} 1,2} Vo #2NAv3y #2
#5 Remove 2 from D(v,) and D(v3) - {1} {1} vi#1Av2 #1 vo =1
#6 Remove 1 from D(v2) and D(v3) - 0 0 vy #2
#7 Backtrack to #o and try vi = 3 {3} 1,2y 1,2} 0
#8 Tryvy =1 - {1} - vy # 1 D(vi) =1{3}
#9 Remove 1 from D(v3) 3} 1} {2} (3,1,2) is a solution D(vz) ={1}
D(vs) ={2}
Constraint propagation
_ /L

What about the solving process ?

- N[)

D(v) =1{1,2,3} Backtrackable search tree
D(va) ={1,2}
vy €{1,2} Dth:%,z}
Vi V2 V) # V3
vi =1 vi £ 1
Vi 6{],2,3} V3 6{1,2}
V1 # V3 D(v1) ={1} D(v1) =1{2,3}
D(v2) =0 D(vz2) ={1,2}
CP Model D(vs) =0 Dlvs) ={1,2}
o J
(-) vy =2 vi #2
Step vy V2 v3 Deductions
#o Initialize {1,2,3} {1,2} {1,2} 0
#1 Tryvy =1 {1} - - v #1Avz #1 D(vq) =1{2} D(vq) =1{3}
#2 Remove 1 from D(v) and D(v3) - 2} {2} vz £ 2Avy #2 D(vz) =0 D(v2) ={1,2}
#3 Remove 2 from D(vy) and D(v3) - 0 0 vy # 1 D(vz) =0 D(vs) ={1,2}
#4 Backtrack to #o and try vi =2 {2} {1,2} 1,2} Vo #2NAv3y #2
#5 Remove 2 from D(v,) and D(v3) - {1} {1} vi#1Av2 #1 vy =1 -y
#6 Remove 1 from D(v2) and D(v3) - 0 0 vy #2
#7 Backtrack to #o and try vi = 3 {3} 1,2y 1,2} 0
#8 Tryvy =1 = {1} - vz # 1 D(vi) ={3} D(vy) ={3}
#9 Remove 1 from D(v3) 3} 1} {2} (3,1,2) is a solution D(vz) ={1} D(vz) ={2}
D(v3) ={2} D(v3) ={1}
9 Constraint propagation)

Do you remember ? All roads lead to Rome, but some are faster than others...

i Bervice ®
ervice .C’]
4 o
a (] @g e
B % %
il o ﬁ\p. °
9 b, ('}% UMR Al AP%\ =3 %6
? 4 S R :
UMR AMAP O .-!J_ - %, = % 21(; 31 min @ HELIOTEL e
Sy 4 %, \\ & Objectif 3[)9 =) i i
-lObjectif3Dé.B ee a MDnlnglE[Ecole de ‘@ _ = o _
Moritpellier - Ecole de i NG =
" T
> - S
e e ==
p—— -2
[] Cirad
VS o
-]
[)
[}
Lycée Frédé \\ ".
Lycée Frédéric N ? Bazille - Agropglis \ a
Bazille - Agropolis b N &
grop! \ \
N E &
5 2 \ﬁ
® i
a ﬁ =) Résidence etuélameQ Q AGROP|
o e ° , ® UXCO Tropicampus
Résidence étudiante 9 Q AGROP g
A UXCO Tropicampus... $.. .
é" ufacture - & [] a
o laude Fall & o @
Lifacture - o a @ S :
laude Fall & ® Agropolis Internatipnal Q
Agropolis International v L] B
5 N 0®®’
8 ® CFF’PA Montpellier @
: p) e
2] QCFF’PA Montpellier 0 e® ...
b o)
ro@Q 4?; e 8 @
F o Fev 3 [J R =

A better model for our simple coloring problem ?

Global constraints CP - On the importance of modeling

Fill each region with a different color
1 can be blue, green or red

2 and 3 can be blue or green

A% vy €{1,2)

vy €1{1,2,3} vz €1{1,2}

Global constraints CP - On the importance of modeling

Fill each region with a different color
1 can be blue, green or red

2 and 3 can be blue or green « AllIDifferent, a global (logical) constraint
\
i AllDifferent(v4, v, , v3)
V1 vy €{1,2
_\)2 2 {) }
vy €1{1,2,3} vz €1{1,2}

A global constraint example: AllDifferent

* |nstead of applying pairwise binary inequality constraints, V1 1

« Variables and their possible values are seen as a bipartite graph

A global constraint example: AllDifferent

* |nstead of applying pairwise binary inequality constraints, V1 1

« Variables and their possible values are seen as a bipartite graph

« A solution corresponds to a maximum cardinality matching (MCM)

A global constraint example: AllDifferent

* |nstead of applying pairwise binary inequality constraints,

« Variables and their possible values are seen as a bipartite graph

« A solution corresponds to a maximum cardinality matching (MCM)

 Filtering: remove edges that cannot belong to a MCM V3 3

> Algorithm based on the Hall's marriage theorem (linear time)

A global constraint example: AllDifferent

* |nstead of applying pairwise binary inequality constraints,

« Variables and their possible values are seen as a bipartite graph

« A solution corresponds to a maximum cardinality matching (MCM)

 Filtering: remove edges that cannot belong to a MCM V3 3

> Algorithm based on the Hall's marriage theorem (linear time)

Step %) V3 Deductions

#o Initialize {1.2,3} {1,2} {1,2} 0

#1 Try vy =1 {1} - - va#1Avz #1

#2 Remove 1 from D(vy2) and D(vs) - {2} {2} vy #2NAvy #2

#3 Remove 2 from D(vy) and D(v3) - 0 0 vy # 1

#4 Backtrack to #o and try vi =2 {2} {1,2} {1,2} Vo #2NAv3y #2

#5 Remove 2 from D(vy) and D(v3) = 1} (1} v3£TAvy #1 Step vy V2 V3 Deductions
#6 Remove 1 from D(v2) and D(v3) = 0 0 vy #2 #o Initialize {,2,3y 1,2} {1,2} vi#F 1AV #2
#7 Backtrack to #o and try v, =3 3} 1,22 1,2 0 |:> #1 Remove 1 and 2 from D(v1) (3} - - 0

#8 Tryvy =1 - {1} - vy # 1 #2Tryvy =1 - {1} - vy #1

#9 Remove 1 from D(v3) {3} {1} {2} (3,1,2) is a solution #3 Remove 1 from D(v3) {3} {1} {2} (3,1,2) is a solution

How to solve a Sudoku with CP ?

How to solve a Sudoku with CP ?

For each cell i, an integer variable:
* X; € [1,9]ifempty
* X; = cifnotempty

How to solve a Sudoku with CP ?

> Foreach cell i, an integer variable:
* X; € [1,9]ifempty
* X; = cifnotempty

--------------- » Foreach set of variables R; in a row:
« AllIDifferent(R;)

How to solve a Sudoku with CP ?

» For each cell i, an integer variable:
* X; € [1,9]ifempty
* X; = cifnotempty

» Foreach set of variables R; in a row:
« AllIDifferent(R;)

- Foreach set of variables C; in a column:
« AllIDifferent(C;)

How to solve a Sudoku with CP ?

» For each cell i, an integer variable:
* X; € [1,9]ifempty
* X; = cifnotempty

» Foreach set of variables R; in a row:
« AllIDifferent(R;)

- Foreach set of variables C; in a column:
« AllIDifferent(C;)

» For each set of variables S; in a square:
« AllIDifferent(S;)

