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Introduction




What do we want when modelling ?

= Understand things



What do we want when modelling ?

= Understand things
= Predict things



What do we want when modelling ?

“All models are wrong, but some are useful”

George E. P. Box



What do we want when modelling ?

= Robustness: Useful when mistakes

= Generalization: Useful applied elsewhere
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Overfitting




What is overfitting

Degree 1 Degree 4
Underfitting Appropriate

Degree 15
Overfitting

adapted from scikit-learn docs
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Common tools and intuitions - Train/Test loss

Degree 2
train MSE = 0.027
test MSE = 0.067

—— train loss
—— testloss

Degree
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Common tools and intuitions - Train/Test loss

Degree 3
train MSE = 0.0092
test MSE = 0.039

—— train loss
—— testloss

Degree
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Common tools and intuitions - Train/Test loss

Degree 4
train MSE = 0.0091
test MSE = 0.03

—— train loss
—— testloss

Degree
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Common tools and intuitions - Train/Test loss

Degree 5
train MSE = 0.0091
test MSE = 0.034

—— train loss
—— testloss
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Common tools and intuitions - Train/Test loss

Degree 6
train MSE = 0.0086
test MSE = 0.019

—— train loss
—— testloss
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Common tools and intuitions - Train/Test loss

Degree 7
train MSE = 0.0084
test MSE = 0.039

—— train loss
—— testloss
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Common tools and intuitions - Train/Test loss

Degree 8
train MSE = 0.0079
test MSE = 0.18

—— train loss
—— testloss
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Common tools and intuitions - Train/Test loss

Degree 9
train MSE = 0.0078
test MSE = 0.12

—— train loss
—— testloss




Common tools and intuitions - Train/Test loss

Degree 10
train MSE = 0.0077

test MSE = 0.53

—— train loss
— testloss
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Common tools and intuitions - Train/Test loss

Error

— - Training error

Underfitting zone | Overfitting zone . .
& & —— Generalization error

Optimal Capacity
Capacity

Figure from Goodfellow et al., 2016
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Common tools and intuitions - AIC/BIC

Akaike information criterion (AIC)
Bayesian information criterion (BIC)

Is the model parameter efficient ?



Common tools and intuitions - Biases

2651

1

Actual values

1

from scikit-learn docs
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Plotting cross-validated predictions

Actual vs. Predicted values
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And in Machine(/Deep) Learning ??

How many parameters to have
Shrek learning botany starting from random noise ?
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And in Machine(/Deep) Learning ??
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Root Causes

Too many parameters
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Root Causes

Too many parameters

Too little training data
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Root Causes

Too many parameters
Too little training data

(bad) training data
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lllustrated examples in Ecology




Contraints in ecology

Data from the real world is noisy,
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Contraints in ecology

Data from the real world is noisy, unbalanced,
800
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Contraints in ecology

Data from the real world is noisy, unbalanced, hard to collect,

g
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Contraints in ecology

Data from the real world is noisy, unbalanced, hard to collect, hard to interpret.
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Contraints in ecology

Data from the real world is noisy, unbalanced, hard to collect, hard to interpret.

Select all images with an
Orange.

cno Verify
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Contraints in ecology

Data from the real world is noisy, unbalanced, hard to collect, hard to interpret.

Select all images with a
Pheidole radoszkowskii minor
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Train set
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A good fitted model
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Test set
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An overfitted model
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Biases in the train set

stz @ oxwze @ veciszz @

oaxsaz2 @ oz Q vz Q

Dec7, 2021

Mar 22,2022

Q  Awsz

Q  Dect 2021

9

A
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Biases in the train set

stz @ oxwze @ veciszz @

oaxsaz2 @ oz Q vz Q

Dec7, 2021

Mar 22,2022

Q

Q

Aug 18,2022

Dec1,2021

9
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Biases in the train set
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Biases in the train set - autocorrelation

® [§37F 03C
® §37F 03C
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Biases in the train set - autocorrelation

® §37F 03C
® §37F 03C
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Biases in the train set - autocorrelation
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Biases in the train set - autocorrelation

4 [ 64F 18C 17/06/17 18:36:34
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Biases in the train set - autocorrelation

2017/07/08
22:37:47
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Unbalanced data
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Unbalanced data

16/33



Unbalanced data
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Unbalanced data
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Deal with unbalanced data

= QOversample ?

RO « 17/33



Deal with unbalanced data

= QOversample ?

RO « 17/33



Deal with unbalanced data

= QOversample ?

RO « 17/33



Deal with unbalanced data

= Oversample 7

= Undersample/saturate ?
x X

* X

‘Uw g 17/33



Deal with unbalanced data

= Oversample 7

» Undersample/saturate ?
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Deal with unbalanced data

= Oversample 7

» Undersample/saturate ?
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Deal with unbalanced data

= QOversample ?
» Undersample/saturate ?

= Adapt loss ?

m g 17/33



Deal with lack of data

= Data augmentation *

‘Uw @ 18/33



Deal with lack of data

= Data augmentation *

‘Uw @ 18/33



Deal with lack of data

P -~
X
/ £ \
’ 14
K
= Data augmentation K X . )
= Pretrained model (
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Deal with lack of data

= Data augmentation
= Pretrained model

= ... collect more data
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Play with your model

Dropout
Pruning
Ablation studies
Distillation

Ensembles

doehh b
ONNO)

OXC)

Pl
ik

Ensemble of subnetworks

()
&
loe®

Figure from Goodfellow et al., 2016

19/33



Need to be very careful on how to evaluate
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How to sample and evaluate ?




Random split ?

“random split training validation 80/20"

RO« 21/33



Random split ?

“random split training validation 80/20"

For the uncurated dataset, we randomly sample 142 million images

Oquab et al., 2023
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Random split ?

“random split training validation 80/20"

For the uncurated dataset, we randomly sample 142 million images

Oquab et al., 2023

Works for huge DL papers, maybe not for you
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Overfitting the test set
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Overfitting the test set
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Overfitting the test set
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Overfitting the test set
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Overfitting the test set
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Overfitting the test set
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Cross-validation

All Data ‘

Training data ‘ | Test data ‘

Fold1 || Fold2 |[ Fold3 || Folda || Folds |

spit1 | Fold1 || Fold2 || Fold3 || Foid4 || Folds |

spit2 | Fold1 || Fold2 || Fold3 || Foid4 || Folds |

Finding Parameters

spits | Fold1 || Foid2 |[ Fold3 || Foida || Folds |

spit4 | Fold1 || Fold2 || Fold3 || Folda || Folds |

spits | Fold1 || Foid2 || Fold3 || Folds || Folds |

Final evaluation { Test data

Figure from scikit-learn docs

2D
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Cross-validation

KFold
I Testing set
0 EEm Training set
1
c
=
E 2
u
= 3
=
O
class
group H = L]
T T T T T 1
0 20 40 60 80 100

Sample index

Figure from scikit-learn docs
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Cross-validation

StratifiedKFold

I Testing set
0 EEm Training set

CV iteration

class

group H = L]

T
0 20 40 60 80 100
Sample index

Figure from scikit-learn docs
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Case studies




Case study : Spatial cross-validation
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Case study : Spatial cross-validation
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Case study : Spatial cross-validation
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Case study : Spatial cross-validation
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Case study : Spatial cross-validation

Random k-fold cv

] Split into K
random folds

Spatial k-fold cv

Split into K
spatial folds

¥
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See. Ploton et al., 2020

Folds
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Case study : Spatial cross-validation

(2]

Semivariance on RF ;¢ residuals

8000 —
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2000 —

W Spatial CV

e

Random CV

T T T T
250 500 750 1000

Distance (km)

See. Ploton et al., 2020
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Case study : Spatial cross-validation

Error in estimated RMSE, in Mg -ha™"

B8 Dosignbased B8 Random K-iokd CV M8 Spatil K-old CV B BLOOCV

See. Wadoux et al., 2021
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Case study : Aging models ?

Starttime:
buffer before t,
History
Novanetitons,
min(to) 5 1=tgtdl
Individual experiment error values
80
g
)
4
5 75" percentile
3 a0
g 28
[Median
20
auaity) gt ater

200 300 400 500 600
dT, days after trained

See. Vela et al., 2022

time
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Perspective : Foundation models ?

See. Oquab et al., 2023
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Perspective : Foundation models ?

A photograph of
Anne Graham
Lotz included in
the training set
of Stable
Diffusion, a text-
to-image model

Animage generated by
Stable Diffusion using
the prompt "Anne
Graham Lotz"
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Perspective : Foundation models ?
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See. Udandarao et al., 2024
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Useful ressources

= scikit-learn docs !
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Thanks for you attention !

Let’s practice !
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