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Introduction



What do we want when modelling ?

• Understand things

• Predict things
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What do we want when modelling ?

“All models are wrong, but some are useful”

George E. P. Box
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What do we want when modelling ?

• Robustness: Useful when mistakes
• Generalization: Useful applied elsewhere
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Overfitting



What is overfitting

adapted from scikit-learn docs
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Common tools and intuitions - Train/Test loss
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Common tools and intuitions - Train/Test loss

Figure from Goodfellow et al., 2016
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Common tools and intuitions - AIC/BIC

Akaike information criterion (AIC)

Bayesian information criterion (BIC)

Is the model parameter efficient ?
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Common tools and intuitions - Biases

from scikit-learn docs
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And in Machine(/Deep) Learning ??

How many parameters to have
Shrek learning botany starting from random noise ?
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And in Machine(/Deep) Learning ??

≈ 2.5B ?
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Root Causes

Too many parameters
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Root Causes

Too many parameters

Too little training data
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Root Causes

Too many parameters

Too little training data

(bad) training data
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Illustrated examples in Ecology



Contraints in ecology

Data from the real world is noisy,
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Train set
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A good fitted model
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Test set
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An overfitted model
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Biases in the train set
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Biases in the train set
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Biases in the train set
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Biases in the train set - autocorrelation
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Biases in the train set - autocorrelation
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Unbalanced data
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Unbalanced data
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Deal with unbalanced data

• Oversample ?

• Undersample/saturate ?
• Adapt loss ?
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Deal with lack of data

• Data augmentation

• Pretrained model
• ... collect more data
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Deal with lack of data

• Data augmentation
• Pretrained model
• ... collect more data
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Play with your model

• Dropout
• Pruning
• Ablation studies
• Distillation
• Ensembles

Figure from Goodfellow et al., 2016
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Need to be very careful on how to evaluate
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How to sample and evaluate ?



Random split ?

“random split training validation 80/20”

Oquab et al., 2023

Works for huge DL papers, maybe not for you
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Overfitting the test set
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Overfitting the test set
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Cross-validation

Figure from scikit-learn docs
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Cross-validation

Figure from scikit-learn docs
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Cross-validation

Figure from scikit-learn docs
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Case studies



Case study : Spatial cross-validation
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Case study : Spatial cross-validation

See. Ploton et al., 2020
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Case study : Spatial cross-validation
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Case study : Spatial cross-validation

See. Wadoux et al., 2021
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Case study : Aging models ?

See. Vela et al., 2022
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Perspective : Foundation models ?

See. Oquab et al., 2023
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Perspective : Foundation models ?
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Perspective : Foundation models ?

See. Udandarao et al., 2024
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Useful ressources

• scikit-learn docs !
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Thanks for you attention !

Let’s practice !
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